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Band Selection in Multispectral Images by
Minimization of Dependent Information

José Martinez Sotoca, Filiberto Pla, and José Salvador Sanchez, Member, IEEE

Abstract—In this paper, a band selection technique for hyper-
spectral image data is proposed. Supervised feature extraction
techniques allow a reduction of the dimensionality to extract rele-
vant features through a labeled training set. This implies an anal-
ysis of the existing class distributions, which usually means, in the
case of hyperspectral imaging, a large number of samples, making
the labeling process difficult. A possible alternative could be the
use of information measures, which are the basis of the proposed
method. The present approach basically behaves as an unsuper-
vised feature selection criterion, to obtain the relevant spectral
bands from a set of sample images. The relations of information
content between spectral bands are analyzed, leading to the pro-
posed technique based on the minimization of the dependent in-
formation between spectral bands, while trying to maximize the
conditional entropies of the selected bands.

Index Terms—Band selection, feature selection, information the-
ory, multispectral images.

I. INTRODUCTION

N CERTAIN application fields where visual information pro-
I cessing is involved, the use of spectral information is of most
importance to perform certain tasks, e.g., in remote sensing,
medical imaging, fine arts, product quality assessment, etc. The
trend for these systems is the use of spectral and spatial in-
formation, i.e., hyperspectral image representations, to estimate
and analyze the presence of chemical compounds, pathologies,
or other information, providing a qualitative and quantitative
evaluation of those features.

Multispectral images are a kind of multimodality, where spec-
tral imaging is combined with digital image processing [4], [17],
[22]. While the images produced by usual digital cameras con-
tain the intensity, or some color representations (e.g., RGB),
multispectral images provide spectral information for each pixel
in a wavelength range with a given spectral resolution. In our
experimental work, each spectral image band is captured at each
selected wavelength with a narrow bandpass filter, allowing a
multiband representation for each pixel in a spectral range.

When having available multispectral data, a common ques-
tion to be solved is how to select the right spectral bands to
characterize the problem. When dealing with multispectral im-
ages, the amount of information to be treated can be very large.
Moreover, the spectral information is highly correlated along a
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given spectral range; therefore, instead of having an exhaustive
representation of the whole spectrum, selecting some key bands
can considerably reduce the amount of data without practically
losing relevant information [20].

Considering multispectral images contain information rep-
resented by means of a set of bidimensional signals, the band
selection problem in multispectral images could be addressed
from the point of view of information theory. Prior work using
information theory concepts has been done in pattern recogni-
tion for simulated data and benchmark database techniques [5],
[19], [27] and in medical applications [28].

The main objective of band selection in multispectral imaging
is getting rid of redundant information and reducing the amount
of data to be processed. Therefore, from the point of view of
pattern recognition, we would be interested in feature selection
[6], [15], [16] rather than in feature extraction [12], [18]. For
instance, obtaining a new set of reduced image representations
from a linear combination of the whole set of original image
bands is not desirable, since we would need the total amount
of information to obtain the new features. On the other hand,
selecting a subset of relevant bands from the original set allows
the process of image acquisition to be reduced to a certain
number of bands instead of dealing with the whole amount of
data, making simpler the image acquisition and analysis.

When analyzing spectral information with supervised meth-
ods, it is necessary to fix beforehand the number of classes
present in the images, and the adequate number of training sam-
ples for a given number of features or spectral bands [11], which
are usually large. The supervised feature selection algorithms
establish a relevance criterion according to class separability
measures for different subsets of features.

In the framework of multispectral imaging, another possi-
ble answer to the problem of feature selection would be us-
ing an unsupervised approach. One way to solve it consists of
grouping the data in the feature space by using clustering tech-
niques [2], [7], [13], [21]. Another approach is to minimize the
classification error by selecting bands that provide the highest
image contrast [10]. In this work, our approach consists of ana-
lyzing the amount of information in a subset of features (bands),
measuring the degree of independence between image bands as
a relevance criterion. Thus, by means of an unsupervised pro-
cess, the connections of information between each subset of
image bands are analyzed, leading to a criterion that allows the
search of spectral bands aiming at removing the redundant in-
formation and, at the same time, trying to maximize the amount
of information in the selected bands.

The organization of the rest of this paper is as follows. Sec-
tion II provides a discussion about higher order information
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measures and their implications in the band selection problem.
Section III describes the proposed criterion to measure the de-
pendent information among bands. Section IV describes the
problematic about multidimensional probabilities of the differ-
ent events and their computational costs. Section V reports the
empirical results, including the classification performance with
respect to the number of bands obtained, comparing them with
some supervised approaches. Eventually, some concluding re-
marks are depicted in Section VI.

II. INFORMATION IN MULTISPECTRAL IMAGES

Let us consider an ensemble of image bands Aq, ..., A,,
where A; is a random variable representing the image band 1.
Thus, the amount of information contained in a multispectral

image can be expressed as the joint entropy H(Aq,..., Ay),
that is
1
H(A:,...,A,) = play,...,a,)logy ————
( 1 ) alzan ( 1 ) 22 p(al7~o~7an)
(1)
where p(aq,. .., a,) represents a joint probability distribution.

The term log, 1/p(ay, ..., a,) means that the amount of in-
formation gained from an event with probability p(aq, ..., a,)
is inversely related to the probability that takes place in this
event. The rarer is an event, the more meaning is assigned to the
occurrence of this event. Therefore, the information per event
is weighted by the probability of its occurrence. The resulting
entropy term is the average amount of information gained from
a set of possible events.

In the case of multispectral imaging or, in general, multimodal
images, the joint probability distribution p(aq,...,a,) can be
estimated as [25]

7an)
MN

plar,...,a,) = hlay, ..., an) ()
where h(aq,...,ay,) is the joint gray-level histogram of bands
Ay, ..., A,, and the normalizing factor, M N (M columns and
N rows) is the image size, assuming all image bands with equal
size.

Mutual information H(A; :...: A,) is a basic concept in
information theory [1]. It measures a certain type of dependence
between random variables. A general expression of the mutual
information [24] can be obtained from

H(Ay:.. 0 Ay) =) (-DF 3" H(A;, ... Ay)
k=1 i <o <dp
3)
where the sum Y H(A4;,,...,A;, ) runs over all possible com-

binations {41, ..., } € {1,...,n}. The generalized mutual in-
formation may be interpreted as the common information shared
among n random variables.

Some interesting properties of the mutual information and
related measures are the following.
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H(A)= 6.3
H(AIB,C)= 3.5
H(A:C|B)=2.0 H(A:BIC)=2.1
H(C)= 6.9 H(B)= 6.5

H(A:B:C)=-1.3

H(CIA,B)= 3.4 H(B:C|A)=2.8 H(BIA,C)= 2.9

Fig. 1. Entropy Venn diagrams (each circle denotes the entropy of an image
band. Joint entropy is the union of circles) for image bands with wavelengths:
450, 540, and 580 nm.

e H(Ay:...:A,) is symmetric under any permutation of
Ag, .o A

® The entropies of an ensemble of image bands satisfy the
following inequality:

H(Ay ... Ay) <min{H(Ay),...,H(A)}. @

On the other hand, the conditional entropy H(Ag41 |
A1, ..., Ay) represents the amount of independent informa-
tion in image band Ay, having measured the rest image bands

Aq, ..., Ag. It can be expressed in terms of joint entropies as
H(App1|Ar, .o Ag)=H(Ay, . Ag) —H(Aq, .. Ag).
%)

From the previous expression, it can be deduced that
0< H(Ag41|A1,...,Ar) < H(Ak4+1), which means that the
larger H(Ag+1 | A1, ..., Ag), the nearer to H(Ag41), i.e., the
more independent information provides the random variable
Apg+1, being the limit H(Ag41). Thus, when the condition is
equal to the entropy of a random variable, this variable is fully
independent.

An incremental way to compute mutual information, when
adding a new random variable A,, to a given set of random
variables Ay, ..., A, 1, can be expressed as follows:

H(Ay:...:A))=H(Ay:...: A1)+ H(A,)

>

(i1 <...<ip)#n

n—1
+> (-D*
k=1

H(Ai,, ..., A, An).  (6)

Relationships among entropies can be conveniently repre-
sented by entropy Venn diagrams [24]. For instance, in Fig. 1,
the entropy diagram with variables A, B, C' has the following
measures: H(A | B,C), H(B| A,C), H(C| A, B) are the con-
ditional entropies; H(A : B|C),H(B:C|A), H(A: C|B)
are the conditional informations; and H(A : B : C) is the mu-
tual information. All these measures can be expressed as a func-
tion of the seven entropies H(A), H(B), H(C), H(A, B),
H(A,C),H(B,C),and H(A, B, C). Therefore, estimating the
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different single and joint entropies of a random variable set al-
low us to estimate any of the conditional or mutual information
measures.

It is well known that all the above-mentioned information
measures are positive, except for H(A : B : C), which can be
negative (see Fig. 1). Indeed, the monotonicity of Shannon en-
tropies implies that conditional entropies, such as H(A | B, C),
are positive definite. Analogously, the conditional informations,
such as H(B : C'| A), are nonnegative.

About the mutual information, it can be characterized by
positive or negative values of H(A: B : C). Therefore, if
H(A: B:(C) >0, the mutual information H(A : B) should
contain part of the mutual information H (A : C). On the other
hand,if H(A : B : C') < 0, then the relation of pairs of variables
is simultaneously unsatisfied. This situation is called correlation
frustration [24]. The existence of negative values of higher or-
ders of mutual information proves the existence of higher order
correlations in the conditional informations.

One of the objectives of the present work is to develop a
computationally affordable method to deal with the information
measures needed. The mutual information is not a desirable
measure we would need for our aims, mainly because it does
not represent all possible types of dependent information. On
the other hand, from the computational point of view, a simpler
information measure would be more adequate.

Thus, a measure that can be worked out in an incremental way
would be desirable, e. g., the conditional entropy. This measure
allows to look at the problem from the opposite point of view,
i.e., instead of looking for all types of dependent information
among the random variables, the objective would be estimating
the independent information a random variable provides, given
the rest of variables. Focusing on measures of independence
rather than correlation measures, leads us to use conditional
entropies.

In order to establish a computational approach, the condi-
tional entropy is less complex than the mutual information to be
estimated from the experimental data [see (5) and (6)], in this
case, from multispectral images. Thus, the proposed criterion
to measure the relevance of a set of features will be based on
conditional entropies.

III. ESTIMATING DISCRIMINANT INFORMATION

According to [18], a multispectral band selector algorithm
should have the following desirable properties.

® Class dependence: Different subsets of classes can be bet-

ter discriminated by different feature sets.

® Ordering constraint: The fact that bands are ordered and

adjacent bands are correlated should be exploited.

® Discriminating transforms: Any transformation of the ini-

tial feature set should try to maximize discrimination
among classes, and thus, use class label information.

The first and third properties are related with supervised in-
formation, i.e., they are desirable properties for a band selection
algorithm that tries to exploit the class label information. In
the approach presented here, the aim is not using supervised
information, to avoid the labeling process. Therefore, class in-

formation is not available when looking for a relevant subset of
image bands.

The concepts of discriminant measures, when having the data
structured in classes, have been substituted by information the-
ory concepts such as amount of information and correlation
measures. From this point of view, we will consider that a set of
bands is more discriminant with respect to other subset of bands
when the following occur.

¢ They contain more information.

® They are less correlated.

Therefore, from the desirable properties described above, we
will exploit the fact that consecutive bands are correlated using
information measures, and we will try to maximize the amount
of information instead of looking for class discrimination. This
way to tackle the problem will allow to deal with unlabeled
data. Moreover, we will show in the experimental results that,
approaching the problem in such a way also provides satisfactory
results with respect to supervised feature selection criteria when
looking for best classification rates.

An open question is how to define the dependent information
among a given subset of image bands. One way could be mea-
suring the mutual information among the image bands. In other
problems involving image data, as in image registration, the
goal is maximizing the mutual information to calculate the cor-
respondence between multimodal images [25]. Band selection
in multispectral images supposes the opposite problem.

Such as described before, in the band selection problem, we
look for a subset of bands where the following occurs,

¢ The subset contains as much information as possible with

respect to the whole multispectral image.

¢ The information each band represents has to be as less

correlated as possible with respect to the other ones, not to
have redundant information present in different bands.

The amount of joint information provided by a set of im-
age bands Aj,..., A, is represented by its joint entropy
H(A4,...,A,).On the other hand, to make this information as
discriminative as possible, the random variables that represent
this joint entropy should be as independent as possible. Any
type of correlation among the random variables would imply a
decrease in the total amount of joint information.

The concept of fotal correlation [29] measures the total
amount of dependence among random variables and can be
defined as follows [23], [26]:

dp1=| Y H(A) | —H(A;,..., Ay)
i=1

play,...,an
Z play,...,a,)logy ( iL )

Hi:l p(a;) ' @

Q1,...,0n

For the case of three image bands, this measure of depen-
dence corresponds to the shaded area in Fig. 2 (darker area is
counted twice). This expression measures all relations of re-
dundant information that may exist in the ensemble of random
variables, and it is nonnegative. One problem of this measure is
that it does not allow a measure of the region representing the
dependent information, since part of the dependent information
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H(A)

H(C) H(B)

Fig. 2. Shared information among three image bands. The dark gray region
corresponds to the dependent information obtained by (7).

is considered several times. Thus, this estimation can lead to
biased values of some of the properties we are interested in.

A possible alternative to measure the dark region of Fig. 2,
representing the dependent information, is considering the total
information contained in a set of image bands, and subtracting
the independent information. Therefore, if we discard the inde-
pendent information, the rest of the information contained in a
set of random variables can be considered as the union of all
possible dependencies and connections of information among
the image bands. The conditional entropies provide a measure
of the independent information of an image band, given the rest
of the image bands [nonshaded areas in Fig. 3(a)]. This fact will
be the basis of our approach.

From the rationale described in the previous paragraph, a
measure of the dependent information of a set of random vari-
ables could be defined by the following expression:

Ap) = > H(Ai [ Aiy, . Ai) - (8)

i1=1

Opr = H(A,,...

where A;,,...,A;, are the complementary variables of A, ;
H(A4,...,A,) is the joint entropy, which represents the total
amount of joint information of set of variables Ay, ..., A,; and
H(A; | A, ..., A;, ) is the conditional entropy of A;,, given
Ai,, ..., A, . In the case of three [see Fig. 3(a)] image bands,
the shaded area would correspond to such a measure.

The selection of a subset of bands that minimizes the above
criterion function would provide a subset of bands with mini-
mum interdependence, trying to keep as much information as
possible. This criterion will be called hereafter the minimization
of the dependent information (MDI).

Given a certain selection criterion, looking for an optimal
subset of image bands (features) is a combinatorial problem
with exponential cost with respect to the number of features [16];
thus, an exhaustive search for large number of features becomes
unaffordable. There exist several approaches in the literature to
look for subsets of features that minimize a criterion function.
A simple strategy is the use of a sequential forward scheme as
follows.

o Input: A ={A,...,A,}, the initial set of image bands;

N is the number of bands to be selected.
e OQutput: B is the subset of bands selected, such as | B| =
N.

Step 1) Initialization: Select the two image bands (A;, A;)
with the lowest mutual information, being H(A; : A;) =
min H(Ay : A;) for all possible pairs of image bands
(Ak, Ar). Initialize the selected pair of bands B = {A;, A;}.

Step 2) Evaluation: For the remaining bands, calculate for each
band A; the MDI criterion function (8), considering the subset
of bands (B U 4;).

Step 3) Inclusion: Choose the image band Ay, that obtains the
highest reduction of the MDI measure. Add this band to the
selected subset B = B U Ay.

Step 4) Go back to Step 2) while |B| < N.

When increasing the number of image bands during the pro-
cess, the joint entropy of the subset of selected image bands
keeps growing, increasing the total amount of joint information,
this increment being faster during the first selected image bands
[see Fig. 3(b)]. On the other hand, the sum of their conditional
entropies decreases with respect to the joint entropy, increasing
the difference between the values of the two curves.

For a given number of selected bands, the difference between
the two curves [Fig. 3(b)] measures the dependent information
of the subset of spectral bands. For each image band included
in the selected subset [Step 3) of the previous algorithm], the
procedure described tries to keep this difference as minimum as
possible when including a new image band.

Some important properties of the proposed MDI criterion can
be expressed by the following lemmas.

Lemma 1: The dependent information defined by the MDI cri-
terion is definite positive, since it always holds that

H(Ay, ... An) > Y H(Ai Ay, As). )

i1=1

Lemma 2: If the dependent information is null, i.e., the MDI
function is equal to zero, then the random variables are fully
independent among them. This conclusion can be obtained in a
straightforward way, since in such a case, the total amount of
joint information (joint entropy) coincides with the conditional
information, i.e., there is no redundant information among the
random variables.

IV. COMPUTATIONAL COMPLEXITY
AND IMPLEMENTATION ISSUES

From the computational point of view, calculating any of these
information measures depends on the cost of the joint entropy
computation, since any of these measures can be estimated from
the joint entropy of different bands (see Section II).

Apart from the computational time, the main drawback in the
calculation of joint entropy is in memory requirements. If we es-
timate the joint entropy of NV bands from the cojoint histogram,
we would need an array of N dimensions to allocate enough
bins for all possible values of gray level co-occurrences in N
bands, i.e., the spatial cost in this case would be exponential
with respect to V.

In general, joint histograms for multispectral images are
sparse, and the higher the dimensionality, the more sparse
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Fig. 3.
conditional entropies versus the joint entropy.

are the histograms. This is due to the fact that, given an image
size, the number of possible different co-occurrences is bounded
by the number of pixels in the image, and it does not depend
on the number of bands. We can take advantage of this fact to
reduce the spatial complexity of the joint entropy calculation.

To avoid this spatial complexity, the cojoint histogram is
represented by a dynamic list of co-occurrences present in the
image. An index is assigned to each co-occurrence, in this case
a string, and the list is ordered according to this index. When
calculating the the cojoint histogram, for a given co-occurrence
value, itis searched in the list. If it is in the list, the corresponding
bin is incremented; otherwise, a new element is inserted in the
list with its corresponding index.

Therefore, the spatial complexity is significantly reduced,
since the memory requirements only stands for the effective
number of possible co-occurrences present in the image, which
is bounded by the number of pixels in the image, avoiding the
problem of sparse arrays.

With respect to time complexity, the cost of calculating the
cojoint histogram depends on the cost of building and updating
the list, which is basically the cost of searching and either in-
serting or increasing the value of an already existing element in
the list. A binary tree data structure has been used in this case to
represent the list, and the search procedure is performed using
a binary search strategy. Therefore, the cost of estimating the
joint entropy is of the order O(NplogNy,), being N, the number
of elements in the list. In the case of a single image, the upper
bound of NV}, is the size of the image in pixels.

Eventually, to calculate the criterion proposed in (8), the num-
ber of joint entropies to be calculated in each subset is O(k + 1),
where k is the size of the subset of bands to estimate. Thus,
if we are looking for a subset of k bands, the overall com-
putational time to estimate the MDI criterion is of the order
O((k + 1)Nplog(INy)). The spatial cost is O(NNy,), the cost of
building the cojoint histogram representation, which is linear
with respect to the number of pixels.
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(a) Shared information among three image bands. Shaded areas correspond to the dependent information obtained by (8). (b) Behavior of the sum of

V. EMPIRICAL RESULTS

The collection of multispectral images used in the experi-
ments was obtained by an imaging spectrograph (Retiga-Ex,
Opto-knowledged Systems Inc., ON, Canada). The spectral
range extended from 400 to 720 nm in the visible (VIS), with a
spectral resolution of 10 nm, obtaining a set of 33 spectral bands
for each image.

The image database consisted of 19 multispectral images
corresponding to orange fruits, of 280 x 280 pixel size, with
different types of defects and skin variations on their surfaces.
To analyze the performance of the approach presented here, two
types of data sets were built.

The first data set consisted of multispectral images with un-
labeled data. The information for each pixel of the 33 image
bands was stored as an unlabeled sample in a feature vector of
33 dimensions. Different data sets were built with one, four,
seven, and nine fruit images. The proposed algorithm based on
the MDI criterion was applied directly in each database as an
unsupervised method to select a subset of bands, with the aim of
selecting the subset of bands with higher discrimination power
to detect the different types of skin areas and defects on the
fruits’ surface. This method assigns higher weights when more
relevant is a feature.

The second data set consisted of a set of 135 540 pixels from
the 19 multispetral images, manually labeled as representative
examples of the different regions present in the image database,
considering five different classes. One of the classes represents
the healthy orange skin, and the other four classes correspond
to different typologies of defects: scratch, trip, insect bite, and
overripe (see Fig. 4). This data set was divided into two, a
partition containing 94 875 instances for training and 40 665
instances for test. This data set was used to compare the proposed
MDI band selection method with other supervised approaches.

To assess the performance of the method, a nearest neighbor
(NN) classifier was used to classify pixels into the different
classes established for defects and fruit surface types. The
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insect bites

overripe

Fig. 4. Pathologies on the orange skin that appear in the multispectral image
data set used.

performance of the NN classifier was considered as the
validation criterion to compare the significance of the subsets
of selected image bands obtained by the proposed approach and
all the other supervised methods considered in the experiments
carried out. To increase the statistical significance of the results,
the average values over five random partitions were estimated.
The samples in each partition were randomly assigned to the
training and test sets as previously described.

A. Comparison With Supervised Feature Selection Criteria

To analyze the accuracy of the ranking of bands obtained
by the presented approach, four supervised filter feature selec-
tion methods were also tested. Thus, the band selection process
was considered as a supervised feature selection approach, in
this case, using the labeled data set for the feature selection
process.

The main motivation about comparing the proposed method
with supervised approaches is that the labeled data set contains
information about the distribution of classes existing in the hy-
perspectral data, and they allow the search for relevant feature
subsets, with the aim of looking for a better class separabil-
ity. Comparing the performance of those approaches, we can
measure the capability of obtaining subsets of relevant features
(image bands) by the introduced MDI approach without a prior
knowledge of the class distributions in the multispectral image
data.

The first method used in this comparative study is the well-
known ReliefF algorithm [14], based on pattern distances. This
algorithm initializes every feature weight to zero and then iter-
ates m times looking for a set of feature weights that optimizes
a criterion function.
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The procedure begins by randomly selecting a sample = from
the data set. For the selected sample, it determines its nearest
neighbor prototype of the same class p"'* (nearest hit) and the
nearest neighbor prototype of a different class p™** (nearest
miss). The algorithm updates each feature weight f; according
to the following criterion:

po = g = Capl) 5 ple)dift pi)
m c#class(z) m
(10)

where p(c) is the prior probability of class ¢ and dif f(,) is
the distance between the sample and the prototype for feature
1. This algorithm was chosen because of its widespread use and
good performance in general feature selection problems.

The second technique used is a multiple discriminant anal-
ysis for n-dimensional spaces and c¢ classes. Let us suppose
that the total mean vector m, the class mean vector my,, and
the number of elements of each class n; have been calcu-
lated. We define the between-class covariance matrix Sg and
the within-class covariance matrix Sy, through the following
expressions:

SB:Znh(mhfm)(mhfm)t (11)
h=1
Sw = Z Z(x —my)(z —my)t (12)

h=1 =z

A transformation matrix w that maximizes the ratio between
the between-class covariance matrix and the within-class covari-
ance matrix can be calculated by applying a statistical Fisher
criterion [8]

thBW

J(W) = (13)

wtSyw’

In this work, we have applied the Wilk’s Lambda test Ay [9]
as a measure of significance in multiple discriminant analysis
for each subset of features. This measure takes values between
0 and 1. The nearer to O is Ay, the higher discriminant power
has the set of variables considered. Ay can be defined through
the following expression:

S
Ay = |Sw|

= _Pwl 14
|Sw + Sg| (1

Fisher-based discriminant has been choosen because it is a
technique that has been used in some works [18], [30] for band
selection in hyperspectral images.

The third technique is related to divergence measures between
classes. One of the best-known distance measures utilized for
feature selection in multiclass problems is the average Jeffries—
Matusita (JM) distance [6]

M = ZC: ZC: P, P, JMy,y,

h=1k>h

15)
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where
Jth = 2(1 — e*bhk)
1 Sk gk \ !
bnk = g(mh —my)’ <sz> (mp, — my)
) ’S{; ‘;‘Sﬁ
511’1
S| [Si|

whereP; is the prior probability of class i; by is the Bhat-
tacharyya distance between classes h and k; and S, and m;
are the covariance matrix and the mean vector of class 7, respec-
tively. In terms of class separability, the higher is the JM distance
between two classes, the more separability between them.

The last technique considered in this comparison study is
based on the mutual information feature selection (MIFS) al-
gorithm, which uses as input the feature distributions and the
classes distributions [3]. In this approach, the output class is
treated as a random variable. At each step, the best feature A; se-
lected by the MIFS algorithm satisfies the following expression:

i—1
A =max | H(C: Aj) — B> H(A;: A)) (16)
; i

where C'is the output class label; A; is the ith feature considered,
givenasubsetof Ay, ..., A;_1 previous selected features; and 3
is atunable parameter. If 3 = 0, the mutual information between
input features is not taken into account and the algorithm selects
the features considering the mutual information between input
features and output classes. This criterion greedly selects the
set of features with higher mutual information within the output
classes, while trying to minimize the mutual information among
the features selected. It has been chosen for comparison with the
MDI-proposed method due to the fact it also uses information
measures to select features, although in a supervised manner.

B. Performance Evaluation

All experimental results shown in this section about classi-
fication rates correspond to the average classification accuracy
obtained by the NN classifier over the five random partitions,
such as described at the beginning of Section V.

To see the influence of the amount of data used to select
the image bands in the MDI criterion, the performance of the
proposed method has been tested with a variable number of
multispectral images. Therefore, the plot of Fig. 5 shows the
performance when using one, four, seven, and nine images as
input data. A clear improvement of the classification accuracy
can be observed from four to nine images.

The poor performace using only one or few images is due to
the fact that, in a single image, there are not enough pixels that
represent to all possible pixel classes considered, i.e., there may
not appear enough pixels representing the different defects and
orange skin types considered. When more image samples are
used, if they contain enough information about all possible pixel
values, the bands selected perform better. We can note a signifi-
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cant improvement from one to four images (Fig. 5). On the other
hand, once the image data set contains a statistically significant
amount of data representing all possible classes, there is no no-
table improvement in the bands selected. From the information
theory point of view, this is because, from a given point, adding
more data to a set of images, does not significantly increase the
total amount of cojoint information.

Fig. 6 shows the performance of the proposed MDI method
compared with the feature selection algorithms introduced in
Section V-A. The plot represents the classification rate with
respect to the subset of NV bands selected. To show the statistical
significance of these figures, the error bars represent the standard
deviation of the classification rate obatined over the five random
partitions mentioned at the end of Section V.

Note (see Fig. 6) that the proposed MDI method obtained from
the data of nine images (MDI[9 oranges]) clearly outperforms
the accuracy of the NN classifier with respect to the rest of
methods as previously mentioned. This behavior is more notable
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TABLE I
COMPUTATIONAL COST WHEN
SELECTING 12 FEATURES

Criteria Time (in minutes)
ReliefF 374
IJM distance 29
Wilk’s A 13
MIFS 512
MDI[training] 139

from a certain number of bands, particularly from four image
bands. The performance of the MDI method applied over the
training set (MDI[training]) is poorer at the first selected bands,
and keeps growing up to obtain a similar performance with
respect to other supervised methods.

With respect to computational time, Table I shows the running
times of the algorithms. In the case of the supervised feature se-
lection criteria, the better performance are achieved by ReliefF
and JM distance. In the case of ReliefF, this approach obtains
a ranking of relevance for each single feature and the compu-
tational cost grows exponentially with respect to the number of
samples in the data set. Moreover, it is not clear to what ex-
tent this technique can detect redundant or highly interacting
attributes when increasing the number of features.

The JM distance provides a high classification accuracy and
low computational cost, as well as Wilk’s A for a low number of
classes, this being the particular case. In the case of MIFS, it does
not seem the use of the mutual information of the image bands
and the use of class labels information lead to an improvement of
the selected features, with respect to the performance of the NN
rule. The MDI criterion is not the most efficient method from
computational point of view. This is mainly due to the cost of
computing the joint probability distributions, as it was analyzed
in Section IV. On the other hand, other methods like ReliefF
and MIFS present a higher computational cost with no notable
improvement in their classification performance (see Fig. 6).

Therefore, for the band selection problem, where there exists
a high correlation among different features (image bands), the
principle of looking for noncorrelated and, at the same time,
as much information as possible has proven to be effective to
obtain subsets of selected image bands that also provide satis-
factory results from the classification accuracy point of view.
Thus, the use of criteria based on information theory over un-
labeled data as a feature selector is a valid approach to extract
discriminant subsets of image bands from a multispectral image
representation, with an affordable computational complexity,
without providing labeled information.

Another interesting result in the image data set used is that,
looking at Fig. 6, from a subset of six/seven image bands, the
improvement of the classification accuracy is not significant.
For instance, the MDI[9 oranges] criterion with only a subset of
11 image bands reaches a classification performance of 88.1%,
while using the whole 33 image bands of the VIS range, the
classification performance is 85.2%. This is due to the fact that
the dependent amount of information present in the subset of
the 11 chosen bands is already very close to the maximum joint
entropy content that can be reached with any set of bands; thus,
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Fig. 7. Examples of labeling results for different subsets of bands correspond-
ing to image in Fig. 8. (Top, left to right) Results with 1, 4, and 8 image bands
selected. (Bottom, left to right) Results with 12, 20, and 33 image bands selected.

Fig. 8. Examples of image bands from a multispectral image in the visible
spectrum. (Top, left to right) Violet, blue, and green. (Bottom, left to right).
Yellow, orange, and red.

any new image band contributes very little to the conditional
entropy terms in the MDI criterion.

To graphically see this effect, in Fig. 7, the classification of
the pixels in a new (not used in the training set) hyperspectral
orange image is shown, assigning a class label for each pixel
using the NN rule over the training set. Fig. 7 shows the behavior
of the pixel labeling for different subsets of bands chosen from
the ranking obtained by MDI. Note how the appearance of the
resulting labeling does not have appreciable changes from the
eight features, approximately.

Finally, Table II shows the ranking of image bands selected by
the different techniques used in the experiments. In the case of
the multispectral image data base used, the spectral bands in the
violet region show a poorer signal-to-noise ratio; therefore, their
inclusion in the feature set usually leads to a worse performance
in the classification rate. The spectral bands around the yellow
region are bands with larger value of entropy. In the orange—red
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TABLE I

RANKING OF IMAGE BANDS SELECTED BY THE DIFFERENT
TESTED METHODS IN NANOMETERS

This constitutes an important advantage of this technique.
Therefore, we could consider the proposed method uses data in
an unsupervised way, avoiding tedious labeling of prototypes,
which allows to easily deal with very large data sets, due to the

ReliefF MIFS Wilk’s A M MDI MDI

distance [tra.] [9 oran.]
F1 700 nm 510 nm 650 nm 720 nm 670 nm 670 nm
F2 640 nm 680 nm 640 nm 710 nm 470 nm 480 nm
F3 680 nm 500 nm 660 nm 700 nm 480 nm 470 nm
F4 650 nm 670 nm 630 nm 530 nm 490 nm 490 nm
FS 690 nm 530 nm 670 nm 690 nm 500 nm 500 nm
F6 710 nm 710 nm 620 nm 520 nm 460 nm 710 nm
F7 660 nm 450 nm 610 nm 440 nm 450 nm 720 nm
F8 720 nm 720 nm 680 nm 640 nm 630 nm 700 nm
F9 590 nm 490 nm 600 nm 540 nm 520 nm 690 nm
FI0 630 nm 430 nm 690 nm 680 nm 440 nm 680 nm
F11 600 nm 700 nm 590 nm 650 nm 510 nm 650 nm
F12 670 nm 570 nm 700 nm 510 nm 400 nm 660 nm

region of the spectrum, the bands are significantly correlated,
and the contributions of information of any of them are similar.

Note how the bands selected by ReliefF are mainly in the
red region, this approach being unable to detect redundant in-
formation. In the case of MDI[9 oranges], the image bands
selected are mainly located in the blue and red regions alterna-
tively. These regions are well separated in the spectrum and their
image bands have a notable difference in their information con-
tent, increasing the amount of discriminant information of the
ensembles.

VI. CONCLUDING REMARKS

An approach to select image bands in multispectral images
based on information theory concepts has been introduced. From
the information theory point of view, different properties can be
estimated for multispectral images to know about their relation-
ships in terms of shared and total amount of joint information.

The proposed approach tries to look at the problem estimating
the independent information in a set of image bands, rather than
looking at any type of correlation or dependent information mea-
sure. The extraction of selected subsets of spectral image bands
can be obtained by means of a criterion based on the proposed
MDI, which consists of a relation between the joint entropy and
the union of the conditional entropies of the considered set of
image bands.

This criterion looks for sets of spectral bands with minimum
interdependency and high amount of cojoint information. This
objective is achieved by calculating the subset of bands that
have high conditional entropies, as a measure of the independent
information each image band provides to the ensemble, being
the principle of the MDI criterion.

Although this criterion has not been established in terms
of class separability for supervised training sets, it has been
shown in the experimental results that the image bands selected
by the proposed approach behave as if they were obtained
by an unsupervised feature selection algorithm, providing
very satisfactory results with respect to classification accuracy
when using the selected bands, even outperforming the other
supervised methods used in the comparison in most situations.

fact that labeling is not necessary.

(1]
(2]

3

—

(4]
[5

—_

(6]

(71
[8

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

J. Acz€l and Z. Daréczy, On Measures of Information and their Charac-
terization. New York: Academic, 1975.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic sub-
space clustering of high dimensional for data mining applications,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Seattle, WA, Jun. 1998,
pp. 94-105.

R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550,
Jul. 1994.

G. H. Bearman, D. Cabid, and R. M. Levenson, “Spectral imaging: Instru-
mentation, applications and analysis,” in Proc. SPIE, vol. 3920, 2000.

K. D. Bollacker and J. Ghosh, “Linear feature extractors based on mutual
information,” in Proc. 13th Int. Conf. Pattern Recognit. Vienna, Austria,
1996, vol. B, pp. 720-724.

L. Bruzzone, F. Roli, and S. B. Serpico, “An extension of the Jeffreys—
Matusita distance to multiclass cases for feature selection,” I[EEE
Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1318-1321, Nov.
1995.

J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,”
J. Mach. Learn. Res., vol. 5, pp. 845-889, 2004.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugen., vol. 7, pp. 179-188, 1936.

C. J. Huberty, Applied Discriminant Analysis.
1994.

P. Groves and P. Bajcsy, “Methodology for hyperspectral band and clas-
sification model selection,” presented at the IEEE Workshop Adv. Tech.
Anal. Remotely Sensed Data. An Honorary Workshop for Prof. David A.
Landgrebe, Washington, DC, 2003.

A. K. Jain and W. G. Waller, “On the optimal number of features in the
classification of multivariate gaussian data,” Pattern Recognit., vol. 10,
pp. 365-374, 1978.

L. Jimenez and D. Landgrebe, “Supervised classification in high dimen-
sional space: Geometrical, statistical, and asymptotical properties of multi-
variate data,” IEEE Trans. Syst., Man, Cybern. C,vol. 28, no. 1, pp. 39-54,
Feb. 1998.

Y. Kim, W. N. Street, and F. Menczer, “Feature selection in unsupervised
learning via evolutionary search,” in Proc. 6th ACM SIGKDD Int. Conf.
Knowl. Dis. Data Mining, Boston, MA, 2000, pp. 365-369.

1. Kononenko, “Estimating attributes: Analysis and extensions of RE-
LIEE,” in Proc. 7th Eur. Conf. Mach. Learn., Catania, Italy, 1994, pp. 171—
182.

D. Korycinski, M. M. Crawford, and J. W. Barnes, “Adaptive feature se-
lection for hyperspectral data analysis using a binary hierarchical classifier
and tabu search,” in Proc. 2003 Int. Geosci. Remote Sens. Symp., Toulouse,
France, Jul. 2003, pp. 297-299.

M. Kudo and J. Sklansky, “Comparison of algorithms that select features
for pattern classifiers,” Pattern Recognit., vol. 33, no. 1, pp. 2541, Jan.
2000.

A. Kulcke, C. Gurschler, G. Spock, R. Leitner, and M. Kraft, “On-line
classification of synthetic polymers using near infrared spectral imaging,”
J. Near Infrared Spectrosc., vol. 11, pp. 71-81, 2003.

S. Kumar, J. Ghosh, and M. M. Crawford, “Best basis feature extraction
algorithms for classification of hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 7, pp. 1368—1379, Jul. 2001.

M. Last, A. Kandel, and O. Maimon, “Information-theoretic algorithm
for feature selection,” Pattern Recognit. Lett., vol. 22, pp. 799-811,
2001.

D. Landgrebe, “Hyperspectral image data analysis as a high dimensional
signal processing problem,” IEEE Signal Proc. Mag., vol. 19, no. 1,
pp. 17-28, Jan. 2002.

M. H. Law, M. A. T. Figueiredo, and A. K. Jain, “Simultaneous feature
selection and clustering using mixture models,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.

R. Leitner, H. Mairer, and A. Kercek, “Real-time classification of polymers
with NIR spectral imaging and blob analysis,” Real-Time Imag., vol. 9,
no. 4, pp. 245-251, 2003.

Hoboken, NJ: Wiley,



SOTOCA et al.: BAND SELECTION IN MULTISPECTRAL IMAGES

[23] F. Masulli and G. Valentini, “Mutual information methods for evaluating
dependence among outputs in learning machines,” Tech. Rep. TR-01-02,
DISI Dipart. Inf. Sci. Inf., Univ. Genova, Italy, 2007.

[24] H.Matsuda, “Physical nature of higher-order mutual information: Intrinsic
correlations and frustration,” Phys. Rev. E, vol. 62, no. 3, pp. 3096-3102,
2000.

[25] J.P.W.Pluim,J. B. A. Maintz, and M. A. Viergever, “Mutual-information-
based registration of medical images: A survey,” IEEE Trans. Med. Imag.,
vol. 22, no. 8, pp. 9861004, Aug. 2003.

[26] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Incorporating connected
region labelling into automated registration using mutual information,”
in Mathematical Methods in Biomedical Image Analysis, A. A. Amini, F.
L. Bookstein, and D. C. Wilson, Eds. Los Alamitos, CA: IEEE Comput.
Soc. Press, 1996, pp. 23-31.

[27] K. Torkkola, “Feature extraction by non-parametric mutual information
maximization,” J. Mach. Learn. Res., vol. 3, pp. 1415-1438, 2003.

[28] G. D. Tourssari, E. D. Frederick, M. K. Markey, and C. E. Floyd, Jr.,
“Applications of mutual information criterion for feature selection in
computer-aided diagnosis,” Med. Phys., vol. 28, no. 12, pp. 2394-2402,
2001.

[29] S. Watanabe, “Information theoretical analysis of multivariate correla-
tion,” IBM J. Res. Develop., vol. 4, pp. 66-82, 1960.

[30] B.Yu,I. M. Ostland, P. Gong, and R. Pu, “Penalized discriminant analysis
of in situ hyperspectral data for conifer species recognition,” IEEE Trans.
Geosci. Remote Sens., vol. 37, no. 5, pp. 2569-2577, Sep. 1999.

José Martinez Sotoca received the B.Sc. degree
in physics from the Universidad Nacional de Edu-
cacion a Distancia, Madrid, Spain, in 1996 and the
M.Sc. and Ph.D. degrees in physics from the Univer-
sity of Valencia, Valencia, Spain, in 1999 and 2001,
respectively.

Currently, he is an Assistant Lecturer at the De-
partment of Programming Languages and Computer
Systems, Jaume I University, Castellén de la Plano,
Spain. He has collaborated in different projects, most
of them in medical application of computer science,
and has published more than 25 scientific papers in national and international
conferences, books, and journals. His main research interests include pattern
recognition and biomedical applications, including image pattern recognition,
hyperspectral data, structured light, and feature extraction and selection.

267

Filiberto Pla received the M.Sc. and Ph.D. degrees
in physics from the University of Valencia, Valencia,
Spain, in 1989 and 1993, respectively.

He has been a Visiting Scientist at the Silsoe Re-
search Institute, the University of Surrey, the Univer-
sity of Bristol, CEMAGREEF, the University of Genoa,
and the Instituto Superior Tcnico, Lisbon Portugal.
He is a Full Professor at the Department of Program-
ming Languages and Information Systems, Jaume I
University, Castellon de la Plano, Spain, and is cur-
rently the Group Coordinator at the Computer Vision
Laboratory. He has authored more than 90 scientific papers in the fields of
computer vision and pattern recognition. He has also been a co-editor of two
books and acted as a Reviewer for several international journals in the field of
computer vision and pattern recognition. His current research interests are color
and spectral image analysis, visual motion analysis, active vision, and pattern
recognition techniques applied to image processing.

Dr. Pla is a Member of the International Association for Pattern Recognition.

José Salvador Sanchez (S’95-A’98-M’00) received
the B.Sc. degree in computer science from the Tech-
nical University of Valencia, Valencia, Spain, in 1990
and the Ph.D. degree in computer science engineer-
ing from Jaume I University, Castellén de la Plano,
Spain, in 1998.

Since 1992, he has been an Associate Professor
at the Department of Programming Languages and
Information Systems, Jaume I University, and is cur-
rently the head of the Pattern Recognition Section,
Computer Vision Laboratory. He is author or coau-
thor of more than 60 scientific publications and co-editor of two books. His
current research interests include pattern recognition and machine learning do-
mains, including classification, feature and prototype selection, ensembles of
classifiers, and decision tree induction.

Dr. Sanchez is a Member of IEEE Signal Processing Society, the IEEE Neu-
ral Networks Society, the IEEE Information Theory Society, IAPR, AERFAI
(Spanish Association of Pattern Recognition and Image Analysis), ECCAI, and
AEPIA (Spanish Association for Artificial Intelligence).

¢



