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Abstract. In this work, we present a clustering algorithm to find clusters of dif-
ferent sizes, shapes and densities, to deal with overlapping cluster distributions 
and background noise. The algorithm is divided in two stages. In a first step, lo-
cal density is estimated at each data point. In a second stage, a hierarchical ap-
proach is used by merging clusters according to the introduced cluster distance, 
based on heuristic measures about how modes overlap in a distribution. Ex-
perimental results on synthetic and real databases show the validity of the 
method. 

1   Introduction 

Many application problems require tools aimed at discover relevant information and 
relationships in databases. These techniques are mainly based on unsupervised pattern 
recognition methods like clustering. The problem of clustering can be defined as: 
Given n points belonging to a d-dimensional space, and provided some measure of 
similarity or dissimilarity, the aim is to divide these points into a set of clusters so that 
the similarity between patterns belonging to the same cluster is maximized whereas 
the similarity between patterns of different clusters is minimized. 

There are two main approaches in clustering techniques: the partitioning approach 
and the hierarchical approach [8]. The partitioning methods build a partition splitting 
a set of n objects into k clusters. These algorithms usually assume a priori knowledge 
about the number of classes in which the database must be divided. The K-means is 
one of the best known partitioning algorithms. 

Other clustering algorithms are based on parametric mixture models [3]. However, 
this work focuses on non parametric approaches, since they can be applied in a more 
general way to metric and non metric feature spaces, just defining a dissimilarity 
measure in the feature space. 

Hierarchical methods consist of a sequence of nested data partitions in a hierarchi-
cal structure, which can be represented as a dendogram. There exist two hierarchical 

                                                           
* This work has been partially supported by projects ESP2005-07724-C05-05 and TIC2003-

08496 from the Spanish CICYT. 



672 D. Pascual, F. Pla, and J.S. Sánchez 

approaches: agglomerative and divisive. The first one can be described in the follow-
ing way: initially, each point of the database form a single cluster, and in each level, 
the two most similar clusters are joined, until either a single cluster is reached con-
taining all the data points, or some stopping condition is defined, for instance, when 
the distance between the clusters is smaller than certain threshold. In the divisive 
approach, the process is the other way around. 

The Single Link (SL) and the Complete Link (CL) methods are the most well 
known hierarchical strategies [4]. Some hierarchical algorithms are based on proto-
types selection, as CURE [5]. On the other hand, in density–based algorithms, the 
clusters are defined as dense regions, where clusters are separated by low density 
areas [6]. Some of the most representative works of the density-based approach are 
DBSCAN [1], KNNCLUST [8] and SSN [2] algorithms. 

The main problems of these algorithms are the fact that clusters are not completely 
separable, due to the overlapping of cluster distributions, and the presence of noisy 
samples. The main contribution of the work presented here is the use of a hybrid strat-
egy between the hierarchical and density-based approaches, and the cluster dissimilar-
ity measure introduced, both aimed at dealing with overlapped clusters and noisy 
samples, in order to discover the most significant density based distributions in data-
bases with high degree of cluster overlapping and clusters with multiple modes. 

2   Clustering Process 

The objective of the algorithm here presented is to detect clusters of different shapes, 
sizes and densities even in the presence of noise and overlapping cluster distributions. 
The algorithm here presented is a mixture of a density-based and a hierarchical-based 
approach, and it is divided in two stages. In the first stage, the initial clusters are con-
structed using a density-based approach. In a second stage, a hierarchical approach is 
used, based on a cluster similarity function defined in terms of cluster density meas-
ures and distances, joining clusters until either arriving to a pre-defined number or 
reaching a given stopping criterion. 

2.1   Point Density Estimation 

Let X be a set of patterns provided with a similarity measure between patterns d. Let x 
be an arbitrary element in the dataset X , and R>0. The neighbourhood VR of radius R 
of x is defined as the set VR(x)={y/d(x,y)≤R}, and the local density p(x) of the non-
normalized probability distribution at point x as: 
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where xi are the points that belong to the neighbourhood of radius R of x, VR, and de, 
the Euclidean distance. 

In the algorithm presented here, we will differentiate between two concepts: core 
cluster and cluster. We will refer to core clusters to the sets that are obtained after 
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applying the first stage of the algorithm, and we will refer to clusters to the groups of 
core clusters that will be grouped into clusters in a further stage. 

2.2   Di-similarities Between Clusters 

As part of the hierarchical approach, we need to define a di-similarity measure that 
takes into account two possible facts, when clusters are overlapped or completely 
separated. Let us define the following di-similarty function d between two clusters Ki 
and Kj , 

)),(1(),(),( jijiji KKdsKKdoKKd +=  (2) 

where do(Ki,Kj) is a measure of overlapping between clusters Ki and Kj , and ds(Ki,Kj) 
is a measure of separability between those clusters. 

The separability measure can be defined as 

ds(Ki, Kj) = min {dsc(Cm ,Cn)},  ∀ Cm , Cn / Cm ∈ Ki and Cn ∈ Kj  

where Cm , Cn are two core clusters, one from each cluster, and let us define the dis-
tance between two core clusters as:  

dsc(Cm, Cn) = min {de(xm,xn)};  ∀ xm, xn / xm∈ Cm and xn∈ Cn  

That is, the distance or di-similarity measure of separability between two clusters is 
the shortest distance between any pair of points, one point from each cluster. There-
fore, for overlapped clusters, ds=0. 

On the other hand, about the cluster overlapping measure in equation (2), do(Ki,Kj), 
let us suppose that each cluster corresponds to one mode in Figure 1. A non paramet-
ric measure of the degree of overlapping of such modes can be defined referring to the 
density value of the border point xb between both modes. 

 
Fig. 1. Overlapping measures between two distribution modes 

Therefore, let us define the overlapping degree of the two modes in Figure 1, 
doc(Cm ,Cn), as the relative difference between the density of the modes centres, xm 
and xn, with respect to the density at the border xb between both modes. We can ex-
press this relative measures as 
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Given a core cluster Cm , the centre of the core cluster xm is defined as the point 
whose density is maximal within the core cluster. Let xm and xn be the centres of Cm 
and Cn respectively. Therefore, Pc in equation (3) is defined as the minimum density 
of the core cluster centres xm and xn, that is, Pc=min(p(xm),p(xn)). Note that the di-
similarity measure of overlapping in equation (3) is normalized in the range [0,1]. 

In equation (3), Pb is the density at the midpoint of the border between both core 
clusters, which is defined as the midpoint between the nearest points xbm and xbn, one 
from each core cluster, Cm.and Cn . Finally, the measure of the degree of overlapping 
between two clusters do(Ki,Kj), is be defined as  

do(Ki,Kj ) = min {doc(Cm,Cn)};  ∀ Cm, Cn / Cm∈ Ki and Cn∈ Kj  

In a few words, the di-similarity measure defined in (2) is aimed at considering that 
clusters are more similar when their probability distributions are either nearer in the 
feature space, measured by means of the separability measure ds(), or when their 
probability distributions are more overlapped. When the probability distributions are 
overlapped (ds=0), the measure of similarity becomes the overlapping degree of the 
probability density term do(), which is a heuristic local estimate of the mixed prob-
ability distributions at the border between clusters (Figure 1). 

2.3   Clustering Algorithm 

The clustering algorithm here presented consists of a hierarchical agglomerative strat-
egy based on a Single Link approach, using the di-similarity measures defined in the 
previous Section. The use of such di-similarity measures defines the behaviour of the 
clustering process and the response to the overlapping of the local distributions of 
patterns in the data set. 

Therefore, the proposed algorithm can be summarized in two stages as follows: 
 
First stage: 
Input:  radius R, data points and density noise threshold 
Output: data points grouped into N core clusters 
 
1. Initially, each point of the database is assigned to a single 

core cluster. 

2. For each point x, calculate its neighbourhood of radius R, VR(x) 

3. For each point x in the database, estimate its probability den-
sity p(x) according to expression (1). 

4. Assign each point x to the same core cluster of the point xc in 
its neighbourhood, being xc the point with maximal density in 
the neighbourhood of x. 

5. Mark all core clusters with density less than the density noise 
threshold as noise core clusters. The rest of the core clusters 
are the resulting N core clusters. 

 
Second stage 
Input:  N core clusters 
Output: K clusters 
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1. Initially, assign each one the N core clusters from the first 
stage to a single cluster. Therefore, there are initially N 
clusters with one core cluster. 

2. Repeat until obtaining K clusters, 

2.1 Calculate the distance between each pair of clusters 
using expression (2) 

2.2 Join the two clusters in step 2.1 that their distance 
is minimum 

3 Eventually, assign the noise core clusters to a nearest. 

3   Experimental Results 

In this section, some experimental results are presented aimed at evaluating the pro-
posed algorithm, hereafter named H-density, and to compare it with some other simi-
lar algorithms referred in the introduction, DBSCAN, CURE and K-means. In order 
to test the algorithm, three groups of experiments are performed. The first one uses 
synthetic databases based on overlapped Gaussian distributions, in order to see the 
response of the proposed algorithm in these controlled conditions. The second ex-
periment uses two synthetic databases from [7], for comparison purposes, and to test 
the problem of the presence of noise, overlapping, and clusters of different sizes and 
shapes. Finally, some experiments are performed on three real databases. 

3.1   Gaussian Databases 

Several databases using Gaussian distributions were generated with different number 
Gaussians, sizes and overlapping degrees. The results obtained in one of these data-
bases are shown in Figure 2, where we can notice how the algorithm has been able to 
correctly detect each one of the existing Gaussian distributions, even in the presence 
of significant overlapping. 

   

Fig. 2. Results on a Gaussian database of (left to right) H-density, DBSCAN and k-means 

The DBSCAN algorithm did not correctly detect all the Gaussians in different 
data-bases because it is not able to separate the overlapped distributions. The CURE 
and K-means algorithms correctly detected the three main clusters. However, in the 
case of trying to find six clusters, they could not detect the 4 Gaussians highly  
overlapped. 
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3.2   Synthetic Databases 

In [7], some experiments were presented for the DBSCAN and CURE algorithms 
using the databases of Figure 3 (see [7] for comparison results with those algorithms 
and note the satisfactory results of the proposed H-density algorithm). Notice the 
presence of clusters of different shapes, sizes, noise and overlapping. Figure 4 shows 
the result of applying the proposed H-density algorithm on these databases. Note how 
the algorithm has correctly grouped the main clusters present in the data set. Figure 4 
shows the result of the K-means algorithm for 6 clusters (left) and 9 clusters (right) of 
the corresponding databases. The errors in the grouping are noticeable. 

     

Fig. 3. Results of the H-density algorithm on databases from [7] 

     

Fig. 4. Results of the K-means algorithm on databases from [7]. Left: for 6 clusters. Right for 9 
clusters. 

3.3   Real Databases 

Two real databases were used in this experiment, Iris and Cancer. These databases 
were used for comparison purposes with the results presented in [4]. The first one is a 
database of Iris plants containing 3 known class labels, with a total of 150 elements, 
50 each of the three classes: Iris Setosa, Iris Versicolour, Iris Virginica. The number 
of attributes is 4, all numeric. The first class, Iris Setosa, is linearly separable from the 
other two classes. 
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In order to compare the clustering results with the ones presented in [4], there was 
provided an error classification measure using the NN classifier, taking as training set 
the resulting clusters of the clustering algorithms, and as a test set the original labelled 
data set. The class assigned to each cluster was the class of the majority of patterns 
with the same class from the original dataset. 

In the first experiment, all the algorithms were run to obtain two classes, and all of 
them obtained 100% of correct grouping or classification, that is, all the tested algo-
rithms were able to correctly separate the Setosa class from the other ones. 

In a second experiment, the algorithms were run to find three clusters. The results 
are shown in Table 1. Notice how, due to the overlapping between Versicolour and 
Virginica classes, the proposed H-density algorithm outperforms the other ones reach-
ing a 94% correct classification. In the case of the Cancer database, it has 2 classes. 
The proposed H-density algorithm obtained a 95.461% of correct classification, the 
same as CURE (Table 2). 

Table 1. Classfification rate of the clustering algorithm on Iris database 

Algorithm % in two classes % in three classes 
DBSCAN 100 71.33 

CURE 100 83.33 
K-means 100 88.33 

H-Density 100 94.00 

Table 2. Classification rate of the clustering algorithms in Cancer database (two classes) 

Database DBSCAN CURE K-means H-Density 
Cancer 94.28 95.461 95.04 95.461 

Finally, the H-Density algorithm was run on a dataset consisting of the chroma val-
ues of the Lab representation of the “house” image (Figure 5 left). This image has 
256x256 pixels, and the clustering was performed in the ab space to find 5 different 
colour classes. Note how the algorithm has been able to correctly identify 5 different 
clusters with a high degree of overlapping and different shapes and sizes (Figure 5 
right). To see the goodness of the clusters found Figure 3 (middle) shows the labelled 
pixels with the corresponding assigned clusters. 

5   Conclusions and Further Work 

A hierarchical algorithm based on local probability density information has been 
presented. The way the density of the probability distribution is estimated, and the use 
of this information in the introduced dissimilarity measure between clusters, provides 
to the algorithm a mechanism to deal with overlapping distributions and the presence 
of noise in the data set. The experiments carried out show satisfactory and promising 
results to tackle these problems usually present in real databases. The experiments 
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also show the proposed algorithm outperforms some existing algorithms. Future work 
is directed to unify the treatment of noise and overlapping in the process, and to intro-
duce a measure to assess the “natural” number of clusters in the hierarchy. 

     

Fig. 5. Result of the H-density algorithm on the “house” image. Left: original image. Middle: 
labelled image. Right: 5 colour clusters found of pixels in the ab space. 
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