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approach makes use of simplifying assumptions that the camera is stationary and that
the projection of vehicles motion on the image plane can be approximated by trans-
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stage significantly reduces the computational load, and the region-based motion esti-

mator gives robustness to noise and changes in the illumination conditions.
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1 Introduction

A traffic monitoring system collects traffic data, analyses it and reports on road state
information by providing measures of traffic flow and density and detecting events such
as traffic jams or accidents. Computer vision techniques can be useful in this context
substituting conventional sensors, like magnetic loops, etc. One of the crucial elements of a
traffic monitoring system is the motion analysis component, which segments vehicles from
the scene and estimates their motion on the image plane. The task is difficult for several
reasons: there are multiple moving objects, the objects of interest are usually small (in the
image plane) and poorly textured, illumination conditions may be poor and change rapidly,
and multiple occlusions are likely and the environment may be cluttered. But probably the
most challenging is the requirement of real-time performance on relatively cheap hardware.
These specific difficulties and constraints require that a standard off-the-shelf algorithm

cannot usually be applied and special algorithms must be designed.

A great deal of work has been done in the area of motion estimation and segmentation in
traffic monitoring. One of the early works [1] describes a system with motion analysis based
on simple frame differencing. This simple approach provided poor results, but it showed that
frame differencing can provide useful information on road scenes, mainly for classifying areas
of the image as static or moving with a relatively low computational cost. This approach
has been followed by recent works such as [2], [3] and [4]. Dubuisson and Jain [2] describe a
technique that combines motion and colour segmentation. A subtraction approach produces
a mask that represents the contour of the vehicle. This mask is subsequently refined by
using colour information. Unfortunately, this approach can not cope with occlusions since it
does not estimate motion for moving regions. In [3], the subtraction of images is combined
with a multiresolution approach. In order to increase robustness to noise, this method uses
sign changes in difference images to detect edges with higher accuracy. In [4], subtraction is
used to construct a map that represents areas of the image where vehicles can be expected
to be observed. This method classifies regions as static or moving by comparing the number

of edgels that a region contains in the current frame and in a reference frame.

An important group of methods fits models to moving vehicles. These methods are suitable

for very structured scenes, such as roads, but some of them present the model selection



problem. For a correct application of these methods it is necessary to choose a correct
model for each vehicle: car, van, truck, etc. This selection can present problems when
vehicles are grouped in the scene. On the other hand, they can provide richer information
than simpler approaches, although their high computational cost reduces their usefulness
in traffic monitoring. We can distinguish two main trends in these methods depending
on the dimensionality that they use. The first trend fits three-dimensional models to the
vehicles and tracks them along a sequence [5], [6], [7], [8], [9]. These methods classify
the vehicle model and supply information about the three-dimensional pose and motion
of each vehicle. As traffic monitoring systems do not require so precise information, the
second trend of methods dramatically reduces the complexity of the model by using two-
dimensional models. The method defined in [10] fits rectangular models to vehicles and can
track one vehicle at frame rate. In [11] a polygonal model and Kalman filters are used in
order to track the vehicle’s position as well as its motion using an affine model. A similar
approach is presented by Koller et al [12] which combines active contours with two separate
Kalman filters. Remagnino et al [13] combines 2-D and 3-D models with a subtraction
approach. Subtraction detects moving regions that are fitted with a three-dimensional or a
two dimensional model depending on their size. Small regions are classified as pedestrian

(2-D model), as bigger regions are assumed as belonging to vehicles (3-D model).

Beymer et al [14] present a method based on point correspondences that takes into account
the rigid motion of the vehicles. Point features that are seen moving rigidly together are
grouped into a single vehicle. Gil et al [15] introduce a method for combining contour-based
and region-based approaches: one is based on the boundaring-box of the moving object and
the other one uses the object’s 2-D pattern. This work compares two combining approaches,
a linear and a Kalman filter based approach. The results show the superiority of the second
one. A different approach is presented in [16] which achieves real time performance by
concentrating the method on a concrete task: counting the number of vehicles that cross a

street junction. This method does not estimate motion and shape of the vehicles.

In order to overcome some of the drawbacks present in the above mentioned approaches,
we present a motion segmentation method for a traffic monitoring system able to deal
with occlusions, several objects with different size and real time using low cost hardware.

Hence, we present a simple but accurate novel algorithm which combines several techniques



to image segmentation and motion estimation of gray level images. Although most of
the employed techniques are well-known, the interest of the proposed method lies on the
way in which they are combined to achieve satisfactory results with low computational
cost. The proposed method uses a gray level segmentation and frame subtraction in order
to distinguish moving from static regions, and carries out robust motion estimation to
separate moving adjacent regions that belong to different objects. One of the premises
of the developed method has been the use of simple techniques that provide satisfactory
results with the aim of achieving a realistic method that can work in real time. Hence,
instead of a complex motion model, a translational model has been used and instead of
fitting vehicles’ models to the image, the proposed method is based on motion analysis of

regions.

Therefore, the rest of the paper has the following structure. Next section, presents an
outline of the algorithm. Sections 3, 4 and 5 describe in greater detail three stages of
processing, namely pre-segmentation, motion analysis and post-processing. Section 6 shows
some experimental results on real-word sequences and, finally, conclusions are drawn is

section 7.

2 Outline of the Algorithm

The algorithm (Figure 1) consists of three stages that are applied to every pair of consecu-
tive frames: pre-processing involving gray-level based segmentation (static segmentation),
motion analysis (including further segmentation if needed) and post-processing stage (mo-

tion segmentation), where regions are allowed to merge.

The static segmentation, that it is applied to the first frame of each pair of consecutive
frames, is designed to group pixels of similar gray-levels. Since the road surface and the cars
are usually poorly textured, the gray-level segmentation is likely to group pixels belonging
to objects (cars) or background (road). It does not matter that the image can be segmented
into too many regions, because what it is really important is to ensure that the pixels that

are included in each region belong to a single object. In the subsequent stages of the



method, motion information will be used to merge regions that belong to the same object.

The first step of the motion analysis stage (second stage) attempts to reduce the number of
regions in order to simplify the subsequent operations. This reduction is based on difference

images analysis, and it allows merging the majority of the static regions.

Motion estimation is applied to the rest of regions. The motion estimator uses a trans-
lational motion model. Although more complicated motion models are probably more
appropriate for the road-traffic sequences, the translational model is computationally less
expensive and can still cope when the scaling effect is small compared to the translation.
The estimation procedure minimises, for each cluster, the sum of Displaced Frame Differ-
ences (DFD) transformed by a robust kernel. As a result we obtain unbiased estimates and
can segment regions with multiple motions. A multiresolution approach is applied in order

to avoid local minima in the minimization process to estimate motion parameters.

The post-processing stage (motion segmentation), uses the spatial neighbourhood relations
between regions to improve the final segmentation. If two neighbouring regions have similar
motion parameters they are likely to belong to the same moving object. In a merging
procedure, the parameters of the neighbouring regions are compared and if similar, the

regions are merged. We can also correct erroneous motion parameters at this stage.

To this end we obtain a 2D segmentation map with a large background region and smaller
foreground regions (cars). An accurate estimate of the translation is given to each region.
The complete system should also include a high-level interpretation module, which is beyond
of the scope of the work presented here. This module would be able to track each vehicle

in time and calculate traffic parameters, such as mean velocity, number of vehicles, etc.

3 Gray-level based segmentation

The purpose of this step is to group pixels into regions that correspond to a single object.
Here, we propose the segmentation method we have developed for our traffic monitoring

system, however, it can be used for other applications taking into account that its properties



are:

e The method is based on unsupervised techniques.

e The final number of regions is not fixed, but the algorithm varies it depending on the

image characteristics.

e Each resulting region belongs to a single object, although an object can consist of

several regions.

Kottle and Sun [17] proposed a clustering method based on the classical k-means algorithm
which employs a three-dimensional space of features: the two image coordinates and the
pixels intensity. Pixel intensity allows the algorithm to separate pixels of the different
objects and the consideration of the image coordinates concentrates the pixels of each
region. This method has an important drawback, namely it requires that the number of
regions (clusters) is provided as an input parameter. It is very difficult to predict reliably
how many regions are needed, because it depends not only on the number of moving objects,
but also on their size. This is because the clustering tends to favour a uniform distribution
and the average size of the clusters depends on their number. If a small number of regions is
used, the clustering may group pixels from different objects, but if a large number is used, it
will cause over-segmentation on all the image, even in very smooth areas, and subsequently

an unnecessary increase of both the computational load and the complexity of the problem.

Our approach removes these problems by introducing a multistage segmentation where the
original image is segmented initially into a relatively small number of clusters, and then
each cluster is considered for further segmentation. Since in traffic scenes the road and cars
do not exhibit much texture, the decision as to whether a cluster should be further divided,

is based on the cluster intensity variance o;.

Each static segmentation stage is an application of the k-means algorithm which subdivides
an original cluster into other smaller clusters in an iterative process. At each iteration a
pixel 7 of the original cluster is assigned to that new cluster j which minimises the following

criterion:
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where 7' is a vector composed of the coordinates and the intensity of the pixel i, m/ is the
vector which contains the mean coordinates and mean intensity of the cluster j, k is the
number of clusters in the image and W/ is a weight matrix that makes the algorithm adapts
itself to the image giving more importance to that set of features which characterize better

to the properties of a particular cluster.

W7 has the following form:
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The weights w/, w’ and w] are calculated as:
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where Nj is the number of pixels of cluster j, and ¢, o] and o] are the typical deviations

of the cluster (coordinate x, coordinate y and gray-level, respectively).

In the absence of noise, o7 can be zero, in such a case the following weights will be assigned:

J — wl = J =
w), =w) =0and wj = L.



Every cluster j has its matrix W/. The use of the matrix makes the algorithm to adapt itself
to the image, giving more importance to that set of features which characterize better to
the properties of a particular cluster. Thanks to this mechanism the iterative process needs
fewer iterations to reach a stable state. These matrices are recalculated each ¢ iterations,

usually between 10 to 15 iterations.

Since it is very difficult to estimate motion for a very small region reliably, a minimum
region size p is used to prevent over-segmentation. On the other hand, large regions with
a small intensity variance are also not desirable, since they may contain a small region of
different intensity. Thus, a maximum region size 7 is also specified. The cluster is divided

if the following condition is fulfilled:

(N; > nor (N; > pand 032 > 0y)),

where N; is the number of pixels in cluster j and oy is the variance threshold. The selection
of the parameter values is somewhat arbitrary, and will depend on the image size, and the
minimum size of the object on the image plane that should be detected. The parameters

are constant for a given system (e.g. fixed image resolution and camera location).

The proposed technique adapts the final number of clusters to the content of the images.
We have to specify the initial number of clusters and the number of divisions per iteration,
but the results are not sensitive to the value of these parameters, since they only affect
to the number of iterations that are needed by the algorithm. Furthermore, the minimum
size of the cluster is restricted, preventing extreme over-segmentation. In our experiments,
we initially create 6 to 10 clusters and every cluster that passes the division test is again
subdivided into 4 clusters. When the size of a cluster is smaller than two times 7, then the
cluster is only divided into 2 clusters. The technique does not guarantee that all pixels are

spatially-connected and we need to perform connected component analysis afterwards.



4 Motion Estimation

This stage consists of two steps. In a first step we perform a simple rough test on each of the
pre-segmented regions to determine if they belong to the stationary background. The test
is based on a simple observation that if there is an intensity edge between two regions and
at least one of them is moving, then the frame difference for some pixels on the boundary is
large (namely for the fractions of edges which are perpendicular to the direction of motion).
Therefore, we count pixels that belong to the boundary of two regions and calculate the

proportion of them with large frame difference.

At this step, two types of regions are merged: static regions and regions that were divided by
the clustering algorithm but in fact form a single region without a substantial discrepancy

in the intensity of their pixels.

Difference images are usually calculated by simple subtraction of corresponding pixels in
two subsequent frames. This method presents two problems: noisy pixels are considered
as moving pixels and some moving pixels are not detected due to the lack of contrast
between neighbouring pixels. In order to avoid these problems as much as possible we
calculate difference images by selecting groups of difference pixels G(¢,7v). In order to
reduce the effect of noisy pixels, the value of a difference pixel is calculated considering its
neighbourhood. Thus, a difference pixel is the resulting value of subtracting the means of
two groups of pixels (for example, four neighbouring pixels) that are corresponding in two
subsequent frames. A difference pixel D;; belongs to a group G(¢J,7) if it satisfy the next
condition:

D;; € G(9,7) it D;; > 9 and 3Dy, € G(V, ) )

/D1 € {D(i+1)j, Di¢j+1), Dii—1yj» Dij—1)} and 3Dy, € G(V9,7)/ Dy > v
In order to detect as many moving pixels as possible we do not use only one threshold, but
two (1, 7). Difference Pixels with an absolute value larger than the smallest threshold (1)
are selected when they form a group of pixels in which there is at least a pixel with difference
absolute value larger than the largest threshold (7). As noisy pixels are isolated pixels with
uncorrelated values, difference pixels that do not belong to a group of at least n pixels with

values of a same sign (positive or negative) are discarded. For images of 192 x 144 pixels
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n = 20 allows us to remove groups of difference pixels that are not produced by motion.

The second step (region-based motion estimation) involves finding the translation parame-
ters that minimises the sum of displaced frame differences (DFD), transformed by a robust
kernel p. The summation is done over all pixels from the region. In fact, we are minimising

an error measure F defined as follows:

1

Ei(dr, dy) = 5 > pld(e,y,dz, dy), a, \) (8)
(z,y)€C;

d(z,y,dz,dy) = L (z,y) — I(z + dz,y + dy) 9)

where Cj is the cluster j, I1(z,y), I>(x,y) are the pixel intensity values at location (x,y) in
the segmented frame and its consecutive one respectively. p(.) is the robust redescending

function and a, A are the function parameters.

Several authors [18] [19] have applied robust estimation to the motion estimation problem.
When multiple motions are present within a region, the pixels that are not consistent
with the dominant motion may bias the estimate. These pixels are referred to as outliers.
Application of the robust kernel p reduces the influence of outliers so that they will not

affect the value of motion estimate. We have used the following kernel due to its low cost:

Azl of jz] < &

ol xy = 3 Ml
Q otherwise

The original kernel (Truncated Quadratic) uses a square and not an absolute value of

DFD (X). We have transformed this kernel because the absolute value is less expensive

computationally.

In this kernel we set the parameter A to 1. The constant « is the maximum contribution
of a pixel to the error measure E. Outliers usually have intensity values very different
from the rest of pixels of the region they belong. Thereby, the kernel limits their influence,
because, in other case, it would be proportional to the difference between their gray value

and the value of their corresponding pixel in the other frame.

Our approach to estimate function (8) is a variant of the steepest descent algorithm but it
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requires less computations. At each iteration, the value of the error function E;(dx,dy) is

compared to the values of E; computed for eight modified displacements:
(de+kxr,dy+1xr)kle{-1,0,1} kl #0,

where r is the current resolution. The procedure ends when the value of E; cannot be

further improved by modifications to (dz, dy).

To avoid the local minima of the E; function and to accelerate the process, we use a
multiresolution approach. A coarse value of the motion parameters is calculated from the
image sequence at coarse resolution. This value is then used as a starting point for iterations
at finer resolution. At the finest resolution we obtain the parameters of the translation to
subpixel accuracy (0.1 pixel). Bilinear interpolation is used to approximate intensity values

at inter-pixel locations.

5 Final Motion Segmentation

This final stage is based on a region merging approach. It attempts to merge regions with
coherent motion. This stage is needed, because the initial gray level based segmentation
may split an object into smaller regions. All pairs of adjacent regions are considered as
candidates to be merged. Two regions, say A and B, are merged if at least one of the

following conditions is satisfied:

(Eap < Q1)AND(Eap < Eaa + Qo) (10)
(Epa < Q1)AND(Epa < Epp + (2) (11)

where Fxy is the error function for the region X displaced with motion parameters calcu-
lated for region Y, and ), and ()5 are two positive numbers that represent, respectively, the
confidence in the motion estimated for a region and the probability of uniting two adjacent
regions. Values assigned to ()1 and @y for a region X are: Q1 = /2 and @y = Exyx * v.
Where « is the constant used in the robust kernel and v is a constant with value 0.18

which has been established experimentally. When error is large (), prevents from merging

11



regions. On the other hand, when the new error is better or equal than the error due to
its estimated motion, (), allows the regions to be merged. This process is repeated for all

pairs of adjacent regions until no pair can be merged.

A special problem arises when considering road regions. As we said, the lack of texture
makes it possible that the values of the DFD function might be similar with very different
pairs of motion parameters when they are applied to road regions. This problem is specially
important due to the large size that road regions usually have. Therefore, if we try to merge
a moving region with the static region corresponding to the road, the DFD gets worse but
the effect of pixels that worsen the DFD is vanished within the large amount of pixels
corresponding to the road. To avoid these situations, after motion estimation, regions are
divided into static (motion near to zero) and non-static regions. When the DFD’s of a non-
static region and a static region are compared, the quantity ()2 becomes @3/2 to reduce
the probability of union. To reduce the probability of union, two adjacent regions of the
same class (static or non-static) are more likely to belong to the same object than a pair
of regions where one of both was estimated as static and the other one as non-static. This
last consideration means that erroneous unions can be avoided, and that the number of

comparisons can be reduced.

6 Results

The proposed method has been tested on several traffic scenes and image sequences. In this
section we show some experimental results obtained on several of these image sequences.
Figure 2 shows the segmentation process for a sequence in which two vehicles are moving
away from the camera. Figure 3 presents the segmentation for a sequence in which 10
vehicles are moving in both directions. For each sequence, subfigure a is the reference
frame, subfigure b is the result of the gray-level based segmentation, subfigure c is the
result of the reduction of regions step, and subfigure d is the final motion segmentation,

showing also the displacement vectors for each moving region.

For the first sequence, it can be seen that both vehicles are correctly segmented, whereas
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for the second sequence, it can be seen that nine vehicles, and not ten, are detected. There
is a car that is moving in the lane on the left that is united to the van that is hiding
part of it. Due to the small relative velocity difference that exists between the velocities
of both vehicles and their distant position with respect to the camera, this can not be
considered as an error of the algorithm. For the rest of vehicles shown in Figure 3 we can
see that they are correctly segmented, in spite of the fact that some of them hide parts of
other vehicles. Therefore, as we can notice the use of a translational model and subpixel

accuracy estimation can cope with small effects of scaling in these type of scenes.

In subfigures 2.c and subfigure 3.c the importance of the reduction of the number of regions
step can be seen. This step allows grouping 60-80% of the static pixels of the image into
one region. Thus, the subsequent operations are carried out more easily and using less

computational time.

The illumination conditions and the size of the vehicles are very similar in all of these
sequences. The images were taken with a similar perspective and distance from the camera
to the objects. Therefore, the parameters of the algorithm have been the same for both
sequences. In the gray-level segmentation stage, the parameters initial number of regions,
typical deviation o, minimum region size p and maximum region size i were chosen as 6,
12.0, 150 and 2000 respectively, whereas, in the motion estimation stage, the thresholds v

and v and the kernel parameter o were set to 6, 10 and 19 respectively.

Figure 4 shows the segmentation of four frames of the second sequence. In the four frames
there is a problem with a small part of the nearest truck. This region is not correctly
segmented due to its small decreasing size. The size of this region decreases at every frame
due to the motion of the two neighbouring cars. This fact causes that the motion parameters
for this region to be incorrectly estimated, although it is very close to the motion estimated
for the truck. In any case, this region can be easily classified as a non-vehicle region since it

has a very small size when it is compared with the size of the neighbouring vehicle regions.

The next figure (Figure 5) shows the effect that the algorithm produce on the resulting
segmentations when we try different combinations of parameters. In general, we can observe

the method has a good response when parameters are slightly modified. This means that
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it is not necessary to look for the optimal parameters of each processed sequence, but there
is a wide range of values that produce suitable segmentations. Although, in some figures
we have used intentionally parameter values that are excessively inappropriate, in all the

figures the main vehicles have been correctly segmented.

Subfigure 5.a is a segmentation using the following parameters: number of regions = 6,
o =14, p = 100, n = 2500, o« = 16. The processed image is the same that appears in
Figure 2, but we have introduced small modifications to almost all the parameters. The
results in both cases are qualitatively similar. Small differences are observed with respect
to the shape of vehicles, but they are due to the changes in the gray-level segmentation

parameters.

In order to observe the effect of each parameter, the rest of subfigures of Figure 5 show
modifications of a unique parameter with respect to the ones used in subfigure 5.a. The
variation of the kernel parameter « in the range 15 - 25 does not produce significant changes
in the final segmentation. Thus, in subfigure 5.b the parameter « is incremented to an
unreasonable value (o = 40) that produces an increase of the outliers influence. As a
consequence, the algorithm miscalculates the motion parameters of a few regions, that,
finally, are not correctly segmented. Subfigures 5.c and 5.d correspond to variations of the
typical deviation used in the gray-level segmentation. This parameter affects gray-level
segmentation: the larger this value is, the bigger regions are. We have observed that the
variation of this parameter in the range 10 - 18 does not influence significantly the results
obtained. Both subfigures (5.c and 5.d) are very similar. The main differences can be
observed in subfigure 5.d, in which the typical deviation value, that is excessively large,
produces that the gray-level segmentation does not carry out all the necessary subdivisions

of clusters.

Subfigures 5.e and 5.f show two segmentations in which the initial number of regions for
the gray-level segmentation are varied with respect to the subfigure 5.a. Results are very
similar when varying this parameter, however there is an important difference: when the
number of regions is increased, the computational cost also augments. In subfigure 5.e
the number of regions is twice the one used in subfigure 5.a (6 initial regions), and the

increment of computing time was 7.7%. In subfigure 5.f, the number of regions was 35 and
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the increment of computing time was 61.5%.

In subfigure 5.g, subpixel motion estimation has been removed. Some adjacent regions that
correspond to different objects are merged due to the lack of subpixel information that is
needed to distinguish the different motions of these vehicles. In subfigure 5.h, the values
of the parameters that control the calculation of difference pixels have been considerably
augmented. Consequently, the quantity of difference pixels is widely reduced, with respect

to subfigure 5.a, and some adjacent regions are merged.

Figure 6 presents the segmentation of several frames from a sequence of cars on a highway.
In this sequence vehicles are moving with velocities close to 100km/h. The parameters used
to process these images were the same that in the sequences of Figures 2 and 3, except for the
minimum region size that was set to 100. Subfigure 6.b corresponds to the segmentation
of a car. This is the first frame in which the car appears in the segmentation since in
previous frames its motion in the image was too close to zero. Similarly, subfigure 6.d
is the first segmentation in which two different vehicles are detected, when their motions
are sufficiently different to zero. Subfigure 6.e is the 55th frame and subfigure 6.f is its

corresponding segmentation. Finally, subfigure 6.h is the segmentation of the 100th frame.

Figure 7 corresponds to a city traffic scene where several cars are moving in a roundabout.
The car speeds are not very quick (40-70 km/h). Some vehicles turn on the left following the
roundabout, and other ones turn on the right, leaving the roundabout. For this sequence,
images 1th, 10th, 20th and 30th are shown. Subfigures 7.b, 7.d, 7.f and 7.h contain their
corresponding segmentations. This sequence presents the problem of little contrast since
it was recorded at late afternoon. Thereby, we have used the same parameters that in the

previous sequences, except for the typical deviation that was set to 9.

All the parts of the algorithm have linear computational cost. The costs of clustering,
motion estimation and motion segmentation stages are, respectively, O(Nk?), O(Nt*) and
O(NI) where N is the number of pixels of the image. The constants k, ¢ and [ are small
compared to N. After a long experimentation their values are estimated as varying in the

following ranges: 1 < k <4,1<t<8and 0 <[ < 49.

The algorithm has been tested on a personal computer with two Pentium IT processors at
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400Mhz, using sequences of images with 192 x 144 pixels and using an ’Activity Map’ [20]
that marks the pixels that are always static. These pixels are discarded since they will be
never occupied by a vehicle. Thus the computational cost have been calculated for several
sequences producing times that range from 0.11 to 0.18 seconds per frame, depending on
the number and size of vehicles present on the image. Particularly, for the sequence showed
in Figure 2 the mean cost per frame was 0.12 seconds. This allows the system to segment, at
least, eight frames per second which would permit a tracker based on the present algorithm

to monitor vehicles in real time.

7 Conclusions

We have presented an approach for motion analysis in traffic scenes, which segments mov-
ing vehicles and estimates their velocities in the image plane. Our approach is a novel
combination of several techniques and algorithms which unites gray-level and motion seg-
mentation with enough robustness and accuracy to be applied to traffic monitoring tasks

and performed in real time.

The initial gray-level segmentation algorithm is an improved variant of the k-means method
that adapts itself to different illumination conditions and groups pixels that uniquely belong
to the same object. That segmentation method can be substituted by another one that
accomplishes the same conditions (see Section 3): unsupervised, non-fixed number of regions
and one object per region (although an object can consist of several regions). The technique
based on difference images reduces in a way that is both fast and simple, the number of

regions by merging almost all the static regions of the image into a stationary background.

The motion estimation process is based on finding the motion that minimizes the gray level
difference between the motion-compensated pixels in the original frame and corresponding
pixels in the consecutive frame. The estimation is performed with sub-pixel accuracy and
uses a multi-resolution approach that means that the local minima of the Displaced Frame
Difference function can be avoided and speeds up the computational process. In order to

achieve a reliable motion estimation, we use a redescending robust kernel that allows the
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system to reject outlier pixels which often appear in outdoor scenes. Sub-pixel accuracy
allows the method to separate vehicles that appear overlapped on the image plane even if

their relative motions are very similar.

We have demonstrated that a motion analysis based on a translational model is a valid
technique for segmentation purposes when the scaling effect of the motion is small compared
with translation, and therefore it is not necessary to employ a more complex model such

as affine or perspective motion model.

The proposed method copes well with multiple moving objects. Unlike some other tech-
niques it does not use feature points and it consequently works satisfactorily in a cluttered
environment under different illumination conditions. Moreover the method can work in
real time using standard low cost hardware according with the requirements for a traffic

monitoring system.

Future work is directed at developing a tracker that takes the segmentation and motion
estimates provided for the current algorithm and carries out surveillance of vehicles. This
tracker should perform traffic monitoring tasks as vehicle counting, detection of traffic jams

and accidents, calculation of medium velocity of traffic, etc.
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Figure 1. Flow Chart of the implemented algorithm.

Figure 2. Segmentation process of a sequence with two vehicles. (a) Reference frame, (b)

Initial segmentation, (c) Merging regions by using difference images, (d) Segmented regions.

Figure 3. Segmentation process of a sequence with ten vehicles. (a) Reference frame, (b)

Initial segmentation, (c) Merging regions by using difference images, (d) Segmented regions.

Figure 4. Segmentation of several frames of the sequence in Figure 3. (a) First frame
segmentation, (b) Forth frame segmentation, (c¢) Seventh frame segmentation, (d) Tenth

frame segmentation.

Figure 5. Segmentation results with different combinations of parameters. (a) Number
of regions= 6, 0 = 14, p = 100, n = 2500, « = 16. (b) Variation of the robust kernel
parameter o = 40. (c) Variation of the typical deviation 0 = 9. (d) o = 20. (e) Variation
of the initial number of regions for the gray-level segmentation. Number of regions = 12.
(f) Number of regions = 35. (g) Execution of the algorithm without subpixel estimation.
(h) Variation of the parameters 1 and ~y for the calculation of difference pixels. ¥ = 10 and

v =18.

Figure 6. Segmentation of several frames of a highway sequence. (a) First frame, (b)
Segmentation of the first frame, (c) 46th frame, (d) Segmentation of the 46th frame, (e)
55th frame, (f) Segmentation of the 55th frame, (g) 100th frame, (h) Segmentation of the
100th frame.

Figure 7. Roundabout scene. Segmentation of several frames of a street sequence. (a) First
frame, (b) Segmentation of the first frame, (c) 10th frame, (d) Segmentation of the 10th
frame, (e) 20th frame, (f) Segmentation of the 20th frame, (g) 30th frame, (h) Segmentation
of the 30th frame.
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