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Abstract. Phase correlation techniques have been used in image reg-
istration to estimate image displacements. These techniques have been

also used to estimate optical ow by applying it locally. In this work

a di�erent phase correlation-based method is proposed to deal with a
deformation/translation motion model, instead of the pure translations

that the basic phase correlation technique can estimate. Some experi-

mentals results are also presented to show the accuracy of the motion
paramenters estimated and the use of the phase correlation to estimate

optical ow.
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1 Introduction

Estimating visual motion is a valuable information for many machine vision ap-

plications, like tra�c monitoring, surveillance, image coding, etc. The work pre-

sented here has been aimed at developing some techniques for accurate enough

visual motion estimation and optical ow. Optical ow estimation methods mea-

sure the velocity and displacement vectors perceived from the time-varying im-

age intensity pattern, that is, they measure the apparent 2D image plane motion

which is the projected 3D motion of the objects of the scene in the image plane.

Most of existing techniques for optical ow estimation can be classi�ed into

Gradient-based techniques, that is, methods based on the so-called optical ow

equation [7][12]; Block matching-based techniques try to overcome the aperture

problem by assuming that all pixels in a block undergo the same motion [6][11];

Spatiotemporal Energy-based techniques which exploits the equivalent optical

ow equation in the frequency domain [9]; Bayesian techniques utilize proba-

bilistic smoothness constraints, usually in the form of a Gibbs ramdom �eld

[10][8].

According to Tekalp's class�cation [13], the above mentioned methods cor-

respond to the non parametric models. Parametric models try to work out the
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motion model of the ortographic or perspective projection of the 3D motion in

the image plane. Motion models are also used in block matching techniques,

thus, in order to look for the best matching block in the other image, some mo-

tion model has to be assumed. There are generalized 2D image motion models.

One of the most used is the a�ne coordinate transformation,

x
0 = a1x+ b1y + c1 ; y

0 = a2x+ b2y + c2 (1)

with (x0; y0) being the image transformed coordinates, and a1; b1; c1; a2; b2; c2 the

motion parameters of the a�ne model. The a�ne tranformation corresponds to

the ortographic projection of a 3D rigid motion of a planar surface. A particu-

lar instance of this model is a translation/deformation model, which takes into

account tranlations and scale changes in the image plane,

x
0 = a1x+ c1 ; y

0 = b2y + c2 (2)

In the work we are presenting here, a block matching technique is used to es-

timate motion and optical ow. This block matching technique will be analyzed

and extended from the translational model to the deformation/translation mo-

tion model (equation 2). Next section will introduce the basics of the phase cor-

relation technique, which will be further analyzed and extended in a subsequent

section. Some experimental results are also presented to shown the accuracy of

the extended method.

2 Phase correlation techniques

Another type of techniques which could be included in the block matching tech-

niques are the phase correlation techniques. Phase corelation techniques have

been used in image registration [1][5]. Although in image registration phase cor-

relation techniques are applied to the entire image, the phase correlation method

has also been used in optical ow estimate applying it locally, using a small win-

dow around the point of interest where the image ow velocity is being estimated

[13].

The basic phase correlation method estimates the relative shift between two

image blocks by means of a normalized cross-correlation function computed in

the 2D spatial Fourier domain. It is also based on the principle that a relative

shift in the spatial domain results in a linear phase term in the Fourier do-

main. Therefore, let fk(x; y) be the image intensity function at time k, and let

fk+1(x; y) be the image intensity function at time k + 1.

If we assume that fk(x; y) has undergone a translation (x0; y0), then fk+1(x; y) =

fk(x�x0; y�y0). Taking the Fourier tranformation of both functions, the image

displacement (x0; y0) can be calculated by means of the normalized cross-power

spectrum funtion, as

Ck;k+1(u; v) =
Fk+1(u; v)F

�
k (u; v)

jFk+1(u; v)F
�
k (u; v)j

(3)



Since Fk(u; v) and Fk+1(u; v) are related as Fk+1(u; v) = e
�j(ux0+vy0)Fk(u; v),

the inverse of the above equation results in ck;k+1(x; y) = �(x�x0; y�y0) which

is the cross correlation function consisting of an impluse whose location gives

the displacement vector. Ideally, we would expect to �nd a single impulse in

the phase correlation function, but in practice several factors contribute to the

degeneration of the phase correlation function.

On the other hand, the phase correlation method has some advantages. One

important feature is that the phase correlation method is relatively insensitive to

changes in illumination, because variations in the mean value or multiplication

for a constant do not a�ect the Fourier phase. Since the phase correlation func-

tion is normalized with the Fourier magnitude, the method is also insensitive to

any other Fourier-magnitude-only degradation.

The use of the DFT to compute the phase correlation function has some

undesirable efects:

Boundary e�ects. To obtain a perfect impulse, the shift in the spatial domain

has to be ciclic. Since things appearing at one end of the block (window) generally

do no appear at the other end, the impulse degenerate into a peak. Further, since

the 2D DFT assumes periodicity in both directions, discontinuities from left to

right boundaries, and from top to bottom, may introduce spurious peaks.

It is well known that the boundary e�ects due to the �nitness of the image

(block) frame become less relevant if the image function has small values near the

frame boundaries. Therefore, the rectangular window representing the framing

process, may be substituted by a weighting window w(x; y) that produces the

decay of the image function values near the boundaries. In this case, we have

addopted a Gaussian-like windowing function to our approach [1],

Spectral leakage. In order to observe a perfect impulse, the components of the

displacement vector must correspond to an integer multiple of the fundamen-

tal frequency. Otherwise, the impulse degenerates into a peak due to the well

known spectral leakage phenomenom. Thus, if we assume that the peak values

are normally distributed around its maximum, then the actual maximumwould

be the mean of this distribution.

Range of displacement estimates. Since the 2D DFT is periodic with the

block size (N;M ), only displacements (x0; y0) can be detected if they satisfy

that �N=2 � x0 � N=2 and �M=2 � y0 � M=2 due to the wrapping e�ect of

the Fourier transform. Therefore, in order to estimate diplacements in the range

(�d; d) along a spatial direction, the block size has to be theoretically at least

of 2d size in this spatial direction.

3 Extending the phase correlation technique to estimate

translation/deformation motion

So far, the phase correlation function has been used to estimate displacements

assuming a pure translation model within the image or block. Some work has

been also done in image registration to estimate pure rotation of images by means

of an iterative-search procedure [5]. In order to extend the phase correlation



techniques to a di�erent motionmodel and taking into account some properties of

the Fourier transform, let us analyze what would happen if the motion undergone

for the pixels in the block is not a pure translation.

Let us consider that an image (block or window) fk(x; y) at instant k un-

dergoes a translation/deformation motion as shown in equation 2. Therefore,

the corresponding gray level values fk+1(x; y) of that block at instant k + 1 are

related with fk(x; y) as fk+1(x; y) = fk(a1x + c1; b2y + c2). Hence, taking the

de�nition of the Fourier Transform of the above expression, and making the

transformation x
0 = a1x + c1 and y

0 = b2y + c2, the expression for Fk+1(u; v)

becomes

Fk+1(u; v) =
1

ja1b2j
e
j(

uc1

a1
+
vc2

b2
)

Z +1

�1

Z +1

�1

fk(x
0
; y

0) e
�j(ux

0

a1
+
vy

0

b2
)
dx

0
dy

0

which is a combination of the shift and similarity theorems of the Fourier trans-

form. In the above expression, only positive values of a1 and b2 will be considered,

since negative values would mean a deformation plus a symmetry transforma-

tion in the image, situation that cannot occur in a real moving scene. Hence, and

rewriting the above equation as a function of the Fourier transform of fk(x; y),

Fk+1(u; v) =
1

a1b2
e
j(

uc1

a1
+
vc2

b2
)
Fk(

u

a1
;
v

b2
) (4)

In order to calculate the parameters of the motion undergone by fk(x; y),

note that from the above equation, the magnitude of Fk+1(u; v) is jFk+1(u; v)j =
1

a1b2
jFk(

u
a1
;
v
b2
)j. Thus, from the above equation we can obtain the values of the

deformation parameters a1 and b2 as follows. Let us calculate the weighted energy

of the spectrum for Fk+1 asZ 1

�1

Z 1

�1

ju Fk+1(u; v)j dudv =
1

a1b2

Z 1

�1

Z 1

�1

ju Fk(
u

a1
;
v

b2
)j dudv

making the transformation u
0 = u=a1 and v

0 = v=b2 yields

Z 1

�1

Z 1

�1

ju Fk+1(u; v)j dudv = a1

Z 1

�1

Z 1

�1

ju
0
Fk(u

0
; v

0)j du0dv0

Solving for a1, and analogously for b2, and exchanging integrals by summa-

tions for the discrete case, we reach to the expression

a1 =

PN=2

u=�N=2

PM=2

v=�M=2
ju Fk+1(u; v)jPN=2

u=�N=2

PM=2

v=�M=2
ju Fk(u; v)j

; b2 =

PN=2

u=�N=2

PM=2

v=�M=2
jv Fk+1(u; v)jPN=2

u=�N=2

PM=2

v=�M=2
jv Fk(u; v)j

(5)

Given Fk(u; v) and Fk+1(u; v), equations 5 provide the values for a1 and b2.

On the other hand, the translation parameters, c1 and c2, can be obtained as

follows. Given Fk+1(u; v), let us transform it into Gk+1(u; v) using the estimated

a1 and b2 as Gk+1(u; v) = Fk+1(a1u; b2v). Applying now equation 4, yields



Gk+1(u; v) =
1

a1b2
e
j(uc1+vc2)

Fk(u; v)

Note that if we now calculate the normalized cross power spectrum ofGk+1(u; v)

and Fk(u; v) we obtain Ck;k+1(u; v) = e
j(uc1+vc2) whose inverse Fourier trans-

formwill give an impulse function at (�c1;�c2), corresponding to the translation

parameters.

Therefore, given the estimated motion parameters for a pixel, to estimate

the optical ow �eld we can compute the velocity vectors (vx; vy) at every pixel

as (vx; vy) = (x� (a1x+ c1); y � (b2y + c2)).

4 Experimental Results

Series �(a1) �(b2)

1 0.00197139 0.00750315

2 0.0128401 0.00464964

3 0.015433 0.00788849

Table 1. Standard deviations of estimated deformation parameters.

In order to test the proposed approach, two type of experiments are shown in this

section. The �rst experiments are directed to show the accuracy of the estimated

parameters. A second set of experiments will compare the optical ow estimation

made by the proposed method with respect to other methods.

To compute the DFT we use the Fast Fourier Transform (FFT) algorithm.

Therefore, for image block sizes not multiple of 2, the zero padding technique

is used to complete a power 2 block size. Moreover, we utilized the nearest

neighbour technique as interpolation function, but calculating Fk+1(u; v) in a

mesh k times the size of the block, usually k = 2.

Figure 1.a shows the Tree image used in these experiments, the same as

usued in [2][3] and it will be used later for comparison purposes. This image

was transformed using three series of deformation parameters. The transformed

images g(x; y) were calculted from the original image f(x; y) using the ideal

interpolator function. The series of transformed images were calcuated as follows:

1. Fixing a1 = 1, c1 = 0 and c2 = 0 and varying b2 from 0:9 to 1:1 incrementing

it in steps of 0:02.

2. The same as in the above serie, but �xing b2 = 1 and varying a1 in the same

way.



3. The same as in the above serie, but now varying a1 and b2 in the same way

as in the series 2 and 1, respectively.

The motion parameters were estimated using the whole 150� 150 image as

a block. In table 1 we can see the standard deviations of the estimated values

for a1 and b2. Note that the maximum standard deviation is 0:015433, so the

expected accuracy estimate is around this order.

Translating Diverging

Technique Av. Error Std Density Av. Error Std Density

Lucas [12] 1.75 1.43 40.8% 3.05 2.53 49.4%

Barron [2] 0.36 0.41 76% 1.08 0.52 64.3%

Bober [3] 0.33 0.25 100% 3.69 4.39 100%

defor. model 1.79 1.10 100% 9.00 3.65 100%

Table 2. Errors for the optical ow of the Translating and Diverging Tree (Ref.

Bober et al., 1994).

Another experiment to test the accuracy of the method is related to the

estimation of dense optical ow. Figure 1.b represents the ground optical ow

�eld of the Translating Tree, and Figure 1.c represents the optical ow �eld of

the Diverging Tree of �gure 1.a. Both examples were used in [2][3]. The error

measure utilized is the one de�ned in [2], and the same as the one used in the

above mentioned works.

            

(a) Original image
(b) Ground translating

ow

(c) Ground diverging

ow

Fig. 1. The ground ow �elds of the Tree image.



Table 2 shows the results presented in [3] comparing serveral optical ow

methods on the same Translating and Diverging Tree images, where only the 3

best results for each example are shown, together with the results obtained by

the proposed method. The ow estimated by all these variations in table 2 have

been computed using a 32x32 window centered at every pixel.

Although errors from the proposed method are bigger with respect to the

errors shown in table 2, note that errors provided by Lucas [12] and Barron [2]

are estimated over 40% and 76% of the ow �eld for the Translating Tree, and

49% and 64% for the Diverging Tree respectively. Bober's method [3] has got the

advantage that it is a combined ow estimation and segmentation method, so

it also uses global information to estimate the velocity at each point, however,

the approach presented here estimates the ow using only local information.

In addition, neither smoothing or any type of �ltering have been applied as a

postprocessing to the raw ow �eld.

Figure 2 shows an example of the ow �eld computed where the background

(road) is approximately stationary and the cars move in both directions. Looking

at the �gures we can notice that the optical ow discontinuities are tackled

quite satisfactorily. The same applies to �gure ??, where we can notice even

the di�erent motions undergone from di�erent parts of the car, for example,

the wheel. In this example, the car is almost stationary with respect to the

camera and the background moves, however the rotation of the wheels can be

appreciated with respect to the camera.

            

(a) Original image (b) Estimated ow �eld

Fig. 2. The n234 sequence.



5 Conclusions

In this paper, the phase correlation method has been combined with a defor-

mation/translation motion model, and some techniques have been developed to

estimate the motion parameters assuming this motion model. Experimental re-

sults have shown the accuracy of the estimated deformation paramenters by the

proposed method.

The developed phase correlation techniques have also been applied to es-

timate optical ow in image sequences providing satisfactory and encouraging

results. A more accuarte subpixel estimation method would be necessary to ob-

tain better optical ow estimates.

Futur extensions of the present work are directed to several issues. First of all,

work is being carried out to try to extend the proposed deformation/translation

motion model using phase correlation techniques to an a�ne motion model,

which can deal with rotation, deformation and translation.
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